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We discuss the coupling of a quantum system through the angular momentum 
to the reservoir of quantum harmonic oscillators. In classical mechanics an 
observation of the oscillator trajectories allows one to determine the system's 
angular momentum. We discuss the quantum dynamics of the model. We show 
that the model of an observation of environmental coordinates can be related to 
some models of angular momentum measurement based on a stochastic 
Schr'odinger equation. 

1. I N T R O D U C T I O N  

A measurement in classical physics can be defined as an irreversible 
process (a record of a measuring device) which allows one to deduce the 
state of  the system. It is believed that the disturbance caused by the apparatus 
can be arbitrarily small. In principle, we could describe the measurement in 
terms of  Hamiltonian dynamics through a coupling of the system to an 
environment. The irreversibility results from an infinite number of degrees 
of freedom of the environment when most of them remain unobserved. Only 
few (macroscopic) parameters of the environment are recorded. Assume we 
wish to follow the above argument on deducing the system's dynamics from 
a state of  a measuring device in the framework of  quantum Hamiltonian 
dynamics. The first difficulty we encounter is the lack of a notion of a classical 
object in the framework of standard quantum mechanics. It is believed that 
only a state of  a classical body can be directly accessible to an observation. 
Instead of  considering a classical object in quantum mechanics, we suggest 
coupling a quantum system to the environment whose classical limit is well 
understood. In such a case the effect of the system upon the environment 
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will be well under control both in standard quantum mechanics as well as 
in classical mechanics, where the notion of a measurement poses no difficulty. 
This way we gain some information about the state of a quantum system 
through a classical measurement. 

We believe that the classical limit of the harmonic oscillator is quite 
well understood (e.g., through the construction of the coherent states). Then, 
we can describe light as a collection of harmonic oscillators. Subsequently, 
scattering of light on a quantum system gives information about the system 
which can be considered as a measurement. We think that the measurement 
of the properties of radiation is sufficiently understood in classical as well 
as quantum physics and that the relation between quantum measurement and 
classical measurement is quite clear in this case. For this reason we investigate 
here a model of an interaction of a quantum system with an environment 
consisting of an infinite set of oscillators [for a discussion of the relevance 
of the quantum environment to classical interpretation see Leggett et  al. 
(1987)]. We investigate what kind of  information about the dynamics of 
the system we gain through an observation of the oscillators (i.e., of the 
electromagnetic field). We are interested in a measurement of the angular 
momentum. The coupling of the angular momentum to the harmonic oscilla- 
tors is defined in Section 2. We investigate in this section its classical and 
quantum dynamics (the Heisenberg picture). In Section 3 we describe the 
dynamics (the Schr6dinger picture) in the stochastic formulation (Haba, 
1994). We assume the conventional Born interpretation of the wave function 
as the sole input of the quantum measurement theory. We show that some 
models of state vector reduction based on a stochastic Schr'ddinger equation 
follow from the stochastic formulation of the standard quantum theory of an 
interaction of a system with an environment. If the measurement of oscillator 
positions is nonselective (i.e., results of the measurement are unknown), then 
we obtain a stochastic equation for the system's state vector and a master 
equation of Gisin (1984, 1989), Ghirardi et  al. (1990), Gisin and Cibils 
(1992), Amman (1994), and Belavkin and Staszewski (1992). It follows from 
the master equation that in the mixed state the off-diagonal matrix elements 
in the basis of the measured M3 angular momentum fall off exponentially 
fast. In this paper we restrict ourselves to a nonselective position measurement. 
We indicate how the results would be modified if the measurement was 
selective. We suggest also a method to treat a simultaneous approximate 
measurement of position and momentum. 

A master equation describing the measurement of position has been 
obtained in Barchielli et  al. (1982) and Caves and Milburn (1987) under the 
assumption of a continuous observation (the momenta of the meter could be 
considered as the environment in that case). An analogous equation for a 
continuous measurement of the angular momentum has been derived in 
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Sanders and Milburn (1989) [an outline of another derivation of such an 
equation appeared in Barchielli et al. (1982)]. 

2. THE MODEL AND ITS DYNAMICS IN THE HEISENBERG 
PICTURE 

We couple a general three-dimensional Hamiltonian system Hs to an 
environment consisting of harmonic oscillators 

1 1 3 
H = ~ m l  p2 + V(X) + ~k ~ p2 + ~ iXktO~ ~ + ,~=l ~ F,~(x)M~, (1) 

where M~ = e,~vX~P~ (we shall denote coordinates of the system by capital 
letters) and the function F~ of oscillator coordinates will be specified later. 

We can obtain models of this type from QED when a quantum particle 
interacts with a quantum electromagnetic field C~ in a finite volume fl .  Let 
us expand the vector potential C~ in eigenmodes g(k, X): 

to 2g(k, X) = Ag(k, X) 

In this formula o~k denotes the eigenfrequencies of the Laplacian A and k the 
eigenmodes (so k is a vector if ~ is a parallelepiped). We assume that g(k, 
X) are real functions normalized as follows: 

t g(k, X)g(k', X) dX = ~(k, k')fl  

The 8-function is equal to 1 for the same g and equal to zero if the eigenmodes 
are different. The expansion in eigenmodes takes the form 

C,~(X) = ~ ,~.---~f(k)%,~(k, v)(a(k, v) + a(k, v)+)g(k, X) 
k,v V tok~L 

where % is the polarization transverse to k, a(k, v) and a(k, v) § are the 
amplitudes fulfilling the (Poisson brackets) commutation relations for creation 
and annihilation operators, andf(k) is a form factor regularizing the electro- 
magnetic field. The amplitude can be expressed by the position and momen- 
tum of an oscillator 

& a~ = (ipk + p, kOJkXk) 

We introduced the Planck constant h only for later convenience of quantiza- 
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tion. Then, the free oscillator Hamiltonian in (1) coincides with the energy 
of the free quantum electromagnetic field (see, e.g., Ford et al., 1988): 

I f dX ((O,C) 2 + (rot C) 2) 
8~r 

where in equation (1) (Ford et al., 1988) 

4 rf(k) 2 
Izk-  o~f/ 

If we restrict ourselves to linear terms in the interaction of the electromagnetic 
field with the system, then we may choose 

F~(x) = ~ r (2) 
k 

with some unspecified couplings Vk~ which could be determined if the interac- 
tion between the system and the electromagnetic field was explicitly defined 
in terms of the vector potential C,. The Hamiltonian interaction (1)-(2) can 
be obtained from a minimal coupling between a particle and the electromag- 
netic field if the eigenmodes g(k, X) are expanded in X, and only the linear 
terms retained. A relativistic generalization of the model is straightforward; 
we replace the system Hamiltonian by the Hamiltonian of the quantum 
scalar field (however, it is still unclear to the author whether dissipation and 
relativistic invariance are compatible). 

When the volume l l  tends to infinity, then the sum over modes has to 
be replaced by an integral. In such a case we obtain the continuum model 

H = p2 + V(X) + p2 + ~ p.~t~2~ + tO,Vk~Xkn. (3) 

We shall treat k as one-dimensional for simplicity (the dimension of k is 
irrelevant). 

The Hamiltonian equations of motion in classical mechanics and quan- 
tum mechanics (in the Heisenberg picture) with the coupling (2) read 

d 
X~, = 1 p,~ + ~ t~ Xv (4) 

m k 

d 
Pa = -OaV or ~ tOkVk~XkEl3"~aPv (5) 

d 1 
dt Xk = - -  Pk (6) tZk 
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d 
dt Pk = --p.ktO~Xk + tokvk~%~X~P~ (7) 

If we assume that V(X) is spherically symmetric and restrict ourselves to the 
angular momentum M,, as the only relevant variable of the system, then the 
equations of motion (4)-(7) reduce to 

d 
M~ = -- ~k COkVkaX~el3~vMv -- w~f~(x)Ml~ (8) -dt 

d 2 oa k 
xk + o~2xk = - -  vk, M~ (9) 

The quantum and classical equations coincide because for the Hamiltonian 
(1) there is no ordering problem. We can either solve the linear equation (8) 
for M and insert the solution into equation (9) for xk or solve the linear 
equation (9) for Xk and insert its solution into equation (8) for M. Equation 
(9) says that if we know the behavior of angular momenta M~(s) as a function 
of time s ~ [0, t] and the initial values of xk and dx~ldt, then we can determine 
the trajectories Xk(S) for s ~ [0, t]. Conversely, if we know the trajectories 
Xk(S) for s ~ [0, t] and the initial values of M,~, then from equation (8) we 
can determine M~(s) in the interval [0, t]. 

In reality, the initial time is quite arbitrary. We do not know the initial 
values of the angular momentum whose evolution we want to observe. How- 
ever, equation (9) suggests that it is sufficient to observe on a time interval 
[tl, t2] the trajectories Xk of the oscillators in order to determine in classical 
physics the evolution of the angular momenta on the same interval. For this 
purpose it is sufficient that there exist Uk~ such that 

or in the continuum 

• P~k u~vk~ = IC6~ (10) 

f dk t~ - -  ukc~v~ = KBaI~ (11) 
P.k 

where K is a constant. In such a case we can invert equation (9) with the result 

M~(t) = K -I dk xk + ~ x k  uk~ (12) 

From equation (12) we can determine the angular momentum if we know 
the position and acceleration. In quantum physics xk(t) are operators which 
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do not commute for different times. Hence, they cannot be measured with 
arbitrary precision. However, a proper choice of frequencies and the couplings 
v~ can make the commutator of the integral on the r.h.s, of (12) decay rapidly 
when the time difference increases (see Section 4 for an example of  such a 
choice). In such a case we could say that the meter consisting of oscillators 
becomes classical. 

Let us consider an example which does not satisfy (11) but nevertheless 
is useful for a demonstration of the effect of environment observation upon 
the system's behavior. Assume not only M3 couples to the environment, i.e., 

vk,~ = 83,~c~ (13) 

Then, in addition to M 2 [when V(X) is spherically symmetric, then M 2 is a 
constant of motion], M3 is also a constant of motion. Solving (9), we obtain 

xk(t) = xk(0) cos(rod) + pk(0------2) sin(rod) + ck M3(1 - cos(tokt)) (14) 
IL~xok IXktOk 

M,, with a = 1, 2 satisfy the linear equation 

d 
_~ (M 1 + iM2)(t) 
ta 

= - i  ~t tOkCk(COS(O)d)Xk(0 ) + - -  pk(O) sin(tod)/(Ml + iM2)(t) 
ILko~ / 

- iM3 ~ 1 c2(1 _ cos(tod))(M1 + iM2)(t) 
t ILk 

-- W(t)(Ml + iMz)(O (15) 

where in the quantum case x~(0) is the multiplication by x~, whereas pk(0) 
= - i h  OIOxk. The commutator of the "frequency operator" W in (15) is 

[W(t), W(t')] = ih ~ totC~k sin(o~k(t -- t')) 
k IL~ 

It can decay rapidly for large It - t'l when we choose the frequencies and 
couplings properly (see Section 4). We could obtain such a conclusion also 
for the commutator of the operator w~(x )  in (8). 

Our suggestion is that through an observation (in the sense of quantum 
measurement theory) of a collection of quantum oscillators we can gain some 
information about the dynamics of the angular momentum. Then, through 
the classical limit of the quantum mechanics of an oscillator (which we 
consider as well understood) we can understand the process of the measure- 
ment in general. 
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3. SCHRI)DINGER PICTURE: A STOCHASTIC DESCRIPTION 

We review in this section the probabilistic formalism of Haba (1994, 
1996a). We consider the Hamiltonian 

1 
n = - h  2~mmA+ V (16) 

(we do not distinguish the environment yet). Let Ut (t -> 0) be a unitary 
Schr6dinger evolution determined by this Hamiltonian. We assume that we 
know I• = U~I• Let us consider an initial wave function of the form d~(x) 
= • where X and d# are analytic functions. We are interested in the 
solution ~t of the Schr6dinger equation with the initial condition ~J, 

ihO,~, = n ~ ,  (17) 

It can be expressed as Xt~bl, where d~t is the solution of the equation 

ih ih 
Ot~Pt -~" ~m a~p, + --m • (18) 

with the initial condition ~b. 
We express the solution of (18) by a stochastic process (Haba, 1994) 

( U , ,  )(x) = X,(x)E[ dp( q,(x) ) ] (19) 

where q,(x) is a complex diffusion process starting at t = 0 from x and solving 
the stochastic differential equation (here 0 -< "r <_ t) 

dq, = ih X/_~,V• 0 d ,  + he  db, (20) 
m 

where 

and 

1 
k = ~ ( 1  + i )  

The Brownian motion bt in equation (20) is defined as the Gaussian process 
with independent increments and the variance 

E[b2t] = t 

In order to express the solution of the Schr6dinger equation for negative time 
we can apply the complex conjugation 

Ut~ = O-, (21) 
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The action of arbitrary operators on states as well as correlation functions 
of operators in the Heisenberg picture in arbitrary states can now be expressed 
as expectation values with respect to the Brownian motion, e.g., 

(X, G~(xt)G2(x)• = E l i  dx Ixt(x)12G,(x)G2(qt(x))] (22) 

Let us consider as an example a model of independent oscillators [the 
reservoir of equation (1)] 

h 2 02 1 
n0=-  + (23) 

The ground-state solution for the SchrOdinger equation reads 

• = exp - ~ 

Then, the stochastic equation (20) takes the form 

dqk = --ito~qk dt + hek dbk 

As an example of a time-dependent solution of the S c ~ t i n g e r  equation let 
us consider the coherent states Iz}. The time evolution is 

(xlUtlz) = exp -~-~ ~ ~ t o ~  + ~ k - - - h  exp(--itod)Z~Xk + R,(z) (25) 

where R is independent of x. Hence, the stochastic process (20) is 

dqk = -ito~qk d~ + itok exp[-itok(t - "r)lzk d'r + k~ dbk (26) 

The solution of (26) with the initial condition x reads 

qk(S; Z) = exp(--itod)xk + izk sin(tot, s) exp(--itod) 

+ h~k exp[--itok(s -- "r)l dbk('r) (27) 

4. THE EFFECT OF THE ENVIRONMENT ON THE 
SCHRODINGER EVOLUTION OF THE SYSTEM 

We assume that an eigenstate Xs of the system's Hamiltonian Hs [equation 
(1) with no environmental oscillators] is known. In order to simplify the 
notation, we express the eigenstate of Hs in the form • = exp(-SIh) .  When 
• is the ground state, then the ground-state wave function is positive and 
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In • is well defined. In our formulas we do not need S itself, but rather [as 
in equation (20)] VS = -hx~lVXs . In order that (20) make sense, we need 
to assume that Xs is a holomorphic function. In such a case the singularities 
of the gradient of S form a discrete set of poles. The Hamiltonian can be 
written in the form (from now on we shall denote coordinates of the system 
by capital letters and the indices of their components by Greek letters; we 
shall denote by Hs the Hamiltonian of the system normalized by HsXs = O) 

where 

and 

+ _ 

Hs = ~m A~ A~ �9 
I~=l 

b OS 
Ar = h - ~  + " ~  

+ O OS 
Ar = - h  ~ + OX~ 

These operators satisfy the commutation relations 

(28) 

(30) 

i 
dQ, = --~ a~S(Q) ds - ~ v~#offh~,13vQv ds + ktrm db~, 

m k 
(31) 

[the Brownian motions with different indices in (30)-(31) are independent]. 
If instead of the ground state • we take the coherent state, then (31) remains 
unchanged, but the process qk(t) is the solution (27) of (26) instead of (30). 
For general F~ of (1) in (31) we would get the term %f~Fi3(q)Q ~ instead of 
the term linear in q. 

dqk = --itokqk ds + hff  k dbk 

which constitute a generalization of the commutation relations for creation- 
annihilation operators. 

We consider now a coupling (1) of Hs to the angular momentum. It is 
easy to see that if • is spherically symmetric (e.g., the ground state of a 
spherically symmetric potential is spherically symmetric), then •215 [where 
• is defined in equation (24)] is an eigenstate of the total Hamiltonian H 
[equation (1)] with the eigenvalue 0. The stochastic equations (20) applied 
now to the system and to the environment take the form (we assume the 
summation convention over the Greek indices) 

[A~, A +1 = 2O~O~S (29) 
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When we insert the solution qk(t) of equation (30) into equation (31), 
we obtain the following closed equation for the system coordinate Q: 

dQ~ = - / o , ~ S ( Q )  ds - N~(s)%wQ ~ ds - N~(s)%~.Q v ds (32) 
m 

+ ktr= db,~ 

where 

N~(s) = ~ VkaXktOk exp(-itoks) (33) 
k 

and 

N~(s) = h ~ v~to k exp(--ic0k(S - 'r))Crk dbk('r) 
k 

(34) 

correspond to "deterministic" and random noise, respectively. 
If instead of  the oscillator's ground state X0 [equation (24)], we took 

the coherent state (25), then on the r.h.s, of (32) we would obtain an additional 
noise term (Haba, 1995) 

iNTh(s)~...,Q,(s) ds 

where 

N~h(s) = i exp(-i tod) ~ Vk~ZktOk sin(to~s) 
k 

(35) 

If we are interested in a computation of expectation values (22) in a 
state • = • where X0 is defined in (24), then in such computations Xk 
play the role of independent Gaussian random variables distributed with the 
density IXo(x)l 2 and the covariance (Haba, 1995) 

h 
E[x~,Xr] = ~ 8k~ (36) 

2tOk~k 

Hence, the noise N ~ can be treated as a complex stochastic process with 
the covariance 

h X E~176 = -2 P.k Vk,~Vka exp(--itok('r + s)) (37) 

h tOk 
ED[NO(s)N~(x)] = "~ ~ ~ Vk,,Vka exp(--itok('r -- s)) 

where ED[" ] means that the average is taken only over the initial values of 
the coordinates of the environment. 
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Next, we find through a direct calculation 

E[N~(s)Ng(.O] 

= h_ ~,. o)__kk Vk~,Vk~[exp(--io~kl'r -- Sl) -- exp(--ieok(a" + s))] ( 3 8 )  
2 ~ ~k 

There is a large freedom in the choice of  frequencies and couplings. However, 
this arbitrariness can be limited by the requirement that the environment 
behaves like a classical reservoir (more precisely, like classical white noise). 
We assume that the sum over frequencies in (37) can be approximated by 
the integral 

where g.~ is a certain l~sitive-definite constant tensor and a is a certain 
positive parameter. This behavior of the sum means that (Ok ~ (ok and 

v m v ~  - -  ~-- ag~, a 
P,k 

Then, the term s- i  is considered as small in comparison to 8(s). Under these 
assumptions on Vk~ and a~ k the quickly oscillating terms in (37) are negligible 
and we obtain an approximation 

E o [ N ~ 1 7 6  = 0 

E o [ N ~  = hag,~fs8('r - s)  (39) 

We define the complex Brownian motion B ~ by 

~ -  dB~' 
e~134ah ~ = N ~ 

where the matrix e is the square root of g, i.e., 

e~el3~ = g,,13 

Under our assumptions on Vk~ from equation (38) we obtain 

E[NR~(s)N~('r)] = h a g ~ 8 ( s  - "r) (40)  

[the second term on the r.h.s, of  (38), as quickly oscillating, is negligible]. 
If we introduce the real Brownian motion as a realization of the noise, i.e., 

, - -  dB'~ 
e'~l~/ha -~s = N~ 
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then we obtain the following mathematical version of equation (32): 

dQ~ = - / 0 ~ S ( Q )  ds - ,4cdh~,f~vQvel3~ dB ~ 
m 

- ,e/-~f~Q~efj~ da~ + h~r, db~ 

where B ~ B R, and b are independent Brownian motions. 

(41) 

5. OBSERVATION OF OSCILLATOR'S  COORDINATES 

A description of the position measurement results already from Born's 
interpretation of the wave function. In this sense it is the minimal addition 
to the Schr6dinger equation. We investigate in this section the consequences 
of a position measurement performed upon the environment on the posterior 
evolution of the system. 

First, consider an initial state ~(x, X) - X0(x)xAX)dp(X) which is a 
product of the ground state of the environment and an arbitrary state of the 
system. It evolves in time from "r = 0 to T = t. At time t a measurement of 
positions xt of the oscillators is performed, but no account of the results is 
taken (a nonselective measurement). In such a case, according to standard 
quantum mechanics, after this measurement the initial pure state �9 is trans- 
formed into a mixed state pe, 

laltt)(xlttl ----> pe(t) = ~ Prlall't)Qttt[Pr (42) 

where  Pr denotes a projection onto the regions of the oscillator's configuration 
space where the oscillator coordinates are looked at. If the measurement is 
complete and exhaustive, i.e., runs over small surroundings of all the points 
of the configuration space, then the sum can be replaced by an integral 

pe(t; X, X') 

= f ~ dx~ Xs(X)xAX')I• x))]E[dp(Q,(X', x))l (43) 

For the model (1) the stochastic process Qt(X, x) is the solution of equation 
(31) with the initial conditions X for Q and xk for qk. When we apply the 
definition of the noise N ~ [equation (39)], then the integration over xk can 
be expressed as an average over N ~ In fact, after the approximations per- 
formed in Section 4 to arrive at (41), we treat from now on (41) as our 
idealized mathematical model of the interaction of a system with the environ- 
ment described otherwise as an infinite-dimensional Hamiltonian system (1). 
So, as a consequence of (41), we obtain the following formula for the evolution 
of the density matrix: 
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pe(t; X, X') = • (44) 

where E[" ] means the expectation value with respect to the Brownian motions 
b and B R, whereas ED means the expectation value with respect to the complex 
Brownian motion B ~ An application of the standard Ito stochastic calculus 
(Ikeda and Watanabe, 1981) shows that ~b(Qt) fulfills the Ito equation (M 
denotes the angular momentum) 

i acb i jr--~e~M~cb dB o d~ = --~ OQ---:~ O~S ds - 

a 
_ i x//-~e~, ~ M~dp dB~ + hCrmO~dp db~ - ~'~ g ~  MR M~dp ds 

h 

h 
+ i ~m Adp ds (45) 

This equation can be considered as a stochastic perturbation of the Schrtidinger 
equation because at a = 0 on the r.h.s, of (45) the terms without the Ito 
differentials have the form/~s~ ds, where Fts = •215 We can rewrite 
(45) in terms of ~(Qt) = xs(Qt)dp(Q,). It satisfies the stochastic I to-  
Schr0dinger equation 

)c(Qt)d(• 

i i 
= - ~  ns~(Q) ds - ~ x / ~ a ~ U ~ ( Q )  ~ (46) 

i a 
, f - ~ e ~ M ~ ( Q )  dB~ + hCrm0a~(Q) db~ - -~  g~M~g~d/(Q) ds 

If we normalized each sample path ~(Qt), we would obtain the nonlinear 
Ito-Schrtidinger equation of Gisin (1984) and Gisin and Percival (1992). 
This is not surprising, because the form of such an equation is determined by 
the requirement that it should be a stochastic perturbation of the SchrOdinger 
equation preserving the norm of the random vector ~. There is a minor 
distinction between (46) and the equation of Gisin (1984) and Gisin and 
Percival (1992). It comes from the transformation ~ ---> X-l~, which is time 
dependent because the process Q is time dependent. For this reason we have 
obtained the modified time differential on the l.h.s, of (46). In order to derive 
the master equation for Pt, we differentiate pe in (44) and apply (45). Then, 
elementary rules of the stochastic calculus (Ikeda and Watanabe, 1981) lead 
to the formula [the linear and nonlinear forms of the Ito-Schr'0dinger equa- 
tions lead to the same master equations] 

i a a 
Otpe = - - ~  [Hs, Pe] - ~~ (gc, f~g~,M~pt, + ppgc, f~M,~M~) + ~ g~,f~M,~ppMf~ 

(47) 
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We have obtained the master equation in the Lindblad form (Lindblad, 1976; 
Gorini et al., 1976). The approximation which leads to the stochastic equation 
(41) is a Markovian approximation implying linear differential equations for 
the density matrix. The Lindblad form of the evolution equation ensures 
that the evolution preserves the normalization of the density matrix and its 
positivity. The solution of (47) defines a semigroup. From the semigroup 
composition law it follows that the subsequent evolution of pP(t) does not 
depend on the time s - t when the measurement was performed. 

Let us consider as an example the model (13). Then, 

g~,13 = ~3r 

We have assumed that the potential is spherically symmetric. In such a case 
M 2 is a constant of motion. Hence, we can choose a basis In, l, rn3) where 
Hsln, 1, m3) = ent}n, 1, m3), M21n, l, m3) = h21(l + 1)In, l, m3), and M31n, l, 
m3) = h m31n, l, m3). In this basis the master equation (47) reads 

i ah . . . . .  t 2 OtPnlrn3'kjrn'3 :---" h (enl -- r 2 (m3 - m3) Dnlm3.kjra' 3 (48) 

It follows from this equation that for a large time 

Pnlm3,kjra'3 ~ e x p ( - ~  ( m 3 -  m;)2t) (49) 

In the terminology of Zurek (1981, 1982; Unruh and Zurek, 1989), the 
eigenstates of M3 constitute the pointer basis in our model (1). 

6. DISCUSSION AND OUTLOOK 

Stochastic equations of the form (45)-(46) (and their nonlinear version 
resulting from a normalization of the random vector) have been postulated 
in Gisin (1984) and Ghirardi et al. (1990). It has been shown in Caves and 
Milburn (1987) that the continuous (in time) measurement of a system's 
position leads to a master equation of the form of that of Ghirardi et al. 
(1990). We have derived a stochastic Schr'odinger equation and a correspond- 
ing master equation related to the energy measurement (assuming an interac- 
tion with an environment) in Haba (1996b). Barchielli et al. (1982) suggested 
that the master equation for a measurement of any observable results from 
standard quantum mechanics if the measurement is repeated in time and 
subsequently a continuum limit is taken. A stochastic equation resembling 
our equation (45) is suggested in Gisin (1989), Gisin and Cibils (1992), and 
Amman (1994). In Sanders and Milburn (1989) and Milburn (1988) a master 
equation of the type (47) is derived under the assumption of a continuous 
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angular momentum measurement. In this paper we have shown that a stochas- 
tic equation for a state vector results as a posterior evolution equation after 
a nonselective measurement of  positions of  particles of  the environment. If  
we make a selective measurement upon the environment, i.e., the sum over 
Pr in (42) is finite, e.g., Pr is a projection operator onto the region 

Ixkl ~ ak (50) 

then the integration over x in (43) becomes bounded. I f  we still insist upon 
the expression of the time evolution by the Brownian motion B ~ then the 
sample paths of  the Brownian motion are restricted to the region (50) [in 
accordance with the Fourier expansion (33) of  the sample paths]. 

In this paper we discussed only the measurement of  oscillator positions 
in the oscillator ground state. We have indicated how the ground state could 
be replaced by a coherent state. Then we could treat the simultaneous approxi- 
mate measurement of  position and momentum as well as their classical limit. 
As indicated in Section 3, working with the coherent state is equivalent to 
the introduction of an additional noise N c~ [equation (35)]. When a statistical 
distribution of the variables Zk (position and momentum) is introduced, then 
we can treat a measurement at finite temperature and investigate the effect 
of  thermal noise on the quantum measurement. 
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